Ученые МФТИ открыли дорогу к созданию быстрых «плазмонных» чипов

Открытие физиков из МФТИ может ускорить компьютеры в 10 раз

Физики из московского Физтеха научились использовать “частицо-волны” света для передачи информации в миниатюрных кремниевых чипах, что позволит создать первые световые компьютеры в ближайшем будущем, чья скорость будет в десятки раз выше, чем у их классических электронных аналогов.

Closeup of finger touching blue toned screen on tablet-pc

Российские физики научились использовать “частицо-волны” света для передачи информации в миниатюрных кремниевых чипах, что позволит создать первые световые компьютеры в ближайшем будущем, чья скорость будет в десятки раз выше, чем у современных аналогов, говорится в статье, опубликованной в журнале Optics Express.

Ученые из лаборатории нанооптики и плазмоники центра наноразмерной оптоэлектроники МФТИ разработали новый метод передачи данных, который позволит уменьшить размеры оптических и оптоэлектронных элементов и увеличить быстродействие компьютеров в десятки раз: они нашли способ избавиться от потерь энергии при использовании поверхностных плазмонов в оптических устройствах, — говорится в статье, опубликованной в журнале Optics Express.

“Поверхностные поляритоны достаточно давно считались одним из кандидатов на роль главного переносчика информации в оптических сетях, однако проблема заключалась в том, что сигнал быстро гас, распространяясь по плазмонным световодам. Мы очень близко подошли к решению этой проблемы, и наш подход открывает путь к разработке высокоскоростных оптоэлектронных чипов”— рассказывает Дмитрий Федянин из Московского физико-технического института в Долгопрудном.

Современная электроника основана на использовании электронов в качестве носителей информации, однако они перестают отвечать современным требованиям: классические медные провода и дорожки на чипах уже не могут передавать информацию с достаточной для современных процессоров скоростью. Это уже сегодня ограничивает рост производительности микропроцессоров, и для поддержания закона Мура требуется внедрение принципиально новых технологий.

Федянин и его коллеги сделали большой шаг к переходу от обычных электронных гаджетов к их футуристическим световым аналогам, научившись “сжимать” свет при помощи так называемых плазмонных резонаторов и рождающихся на их поверхности необычных частиц – поляритонов.

Поляритоны представляют собой одну из относительно недавно созданных виртуальных частиц, которая, как и фотон, одновременно ведет себя как волна и как частица. Он состоит из трех компонентов — оптического резонатора (набора из двух зеркал-отражателей), заточенной между ними световой волны и квантового колодца – атома и вращающегося вокруг него электрона, который периодически поглощает и испускает квант света.

Поверхностные поляритоны, как объясняет Федянин, позволяет решить ключевую проблему оптоэлектроники – невозможность миниатюризации некоторых ключевых компонентов световых компьютеров.

Дело в том, что их размеры не могут быть меньше 200 нанометров для видимого света и около 500 нанометров для инфракрасного излучения из-за явления дифракции света — огибания волнами света препятствий, имеющих размеры менее половины длины световой волны. Для сравнения, размеры транзисторов и проводников в современных чипах составляют десятки и единицы нанометров.

Поляритоны, по словам Федянина, позволяют преодолевать этот предел, так как в таком случае внутри чипа будет двигаться не свет, а коллективные колебания электронов, порождаемые в плазмонных резонаторах. Проблема заключается в том, что при достаточно миниатюрных размерах подобные резонаторы начинают греться еще сильнее, чем это делают транзисторы в обычных кремниевых чипах, что делает подобную замену по сути бессмысленной.

Эти потери энергии в виде тепла приводят к тому, что колебания плазмонов очень быстро затухают без внешней поддержки. Физики из МФТИ разработали такой метод поддержки этих плазмонов при помощи слабых импульсов тока, который позволяет им проходить от одного конца чипа до его противоположной оконечности без потери сигнала.

Секретом этого успеха стало то, что российские ученые вставили тонкий слой диэлектрика между резонаторами из наночастиц золота и полупроводниковой “шиной”, через которую шел ток, поддерживающий колебания плазмонов. Подобное техническое решение почти обнулило токи утечки, резко снизило тепловыделение и сделало возможным использование плазмонных поверхностных поляритонов в оптоэлектронике, заключают физики.

Переход от электрических импульсов к оптическим может решить эту проблему. Высокая частота оптического диапазона (это сотни терагерц) позволяет передавать и обрабатывать больше данных, а значит, повысить быстродействие. Оптоволоконные технологии широко используются в коммуникационных сетях, но использование света в процессорах и логических элементах наталкивается на проблему дифракционного предела: размеры волноводов и других оптических элементов не могут быть значительно меньше длины волны.  Для ближнего инфракрасного излучения, которое используется для передачи данных, это микроны, что никак не соответствует требованиям к современной электронике. Логические элементы «обычных» современных процессоров имеют размеры в десятки нанометров. Оптическая электроника может стать конкурентоспособной, если удастся «сжать» свет до этого масштаба.

Обойти дифракционный предел становится возможным, если перейти от фотонов к поверхностным плазмон-поляритонам — коллективным возбуждениям, представляющим собой взаимодействие между фотонами и колебаниями электронов в металле на границе между металлом и диэлектриком. Их также называют квазичастицами, потому что по своим свойствам они в значительной степени похожи на обычные частицы, такие как фотоны или электроны. В отличие от объемных световых волн, поверхностные поляритоны «держатся» за границу раздела двух сред, являясь поверхностными электромагнитными волнами. Это позволяет перейти от привычной трехмерной оптики к двумерной.

«Грубо говоря, фотон в пространстве занимает определенный объем, порядка длины волны света. Мы можем “сжать” его, преобразовав в поверхностный плазмон-поляритон. Соответственно, используя такой подход, удается повысить степень интеграции и снизить размеры оптических элементов. Но у этого замечательного решения, к сожалению, есть обратная сторона. Для того, чтобы существовал поверхностный плазмон-поляритон, нужен металл, точнее электронный газ в нем. А это влечет за собой запредельно высокие Джоулевы потери, подобные тем, что мы имеем, пропуская постоянный ток по металлическим проводам, но только на оптических частотах»— говорит Федянин.

По его словам, из-за поглощения в металле энергия плазмонов на расстоянии около миллиметра падает в миллиарды раз, что фактически лишает смысла попытки использовать их на практике.

Рис.1. Активный гибридный плазмонный волновод

Рис.1. Активный гибридный плазмонный волновод

«Наша идея состоит в том, чтобы скомпенсировать потери, закачивая дополнительную энергию в поверхностные плазмон-поляритоны. Если мы хотим интегрировать плазмонные волноводы в чипы, то можно использовать только электрическую накачку»— поясняет ученый.

Он и его коллеги Дмитрий Свинцов и Алексей Арсенин из лаборатории нанооптики и плазмоники разработали новый метод электрической накачки плазмонных волноводов на основе МДП-структур (металл-диэлектрик-полупроводник) и провели его моделирование. Расчеты показывают, что пропускание относительно слабых токов накачки через наноразмерные плазмонные волноводы позволяет полностью компенсировать потери поверхностных плазмонов, а значит, становится возможным передавать сигнал без потерь на большие (по меркам чипа) расстояния. При этом степень интеграции таких активных плазмонных волноводов на порядок выше, чем фотонных.

Рис.2. Изображение наноразмерных плазмонных волноводов в растровом электронном микроскопе

Рис.2. Изображение наноразмерных плазмонных волноводов в растровом электронном микроскопе

«В оптоэлектронике всегда приходится находить компромисс между оптическим и электрическими свойствами, что зачастую невозможно в плазмонике, где выбор металлов ограничен тремя-четырьмя материалами. Основным достоинством предложенной схемы накачки является ее независимость от свойств контакта металл-полупроводник. Подбирая под каждый полупроводник диэлектрик, можно добиться такой же эффективности, как в случае гетероструктурных лазеров, при этом сохранив характерные размеры плазмонной структуры на уровне 100 нанометров», — говорит Федянин.

Рис.3. Принцип работы электрической накачки на основе МДП (металл-диэлектрик-полупроводникового) контакта

Рис.3. Принцип работы электрической накачки на основе МДП (металл-диэлектрик-полупроводникового) контакта

Авторы исследования отмечают, что полученные ими результаты еще ждут экспериментальной проверки, но ключевое препятствие устранено.

Исследование поддержано грантом Российского научного фонда #14-19-01788 и программой повышения конкурентоспособности МФТИ «5–100» .

Ссылка на оригинальную статью: D.A. Svintsov, A.V. Arsenin, D.Yu. Fedyanin, Full loss compensation in hybrid plasmonic waveguides under electrical pumping // Optics Express 23, 19358-19375 (2015).

 

Фехтовальный дуэт "Бретёр" - братья Мазуренко Виктор и Олег: